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Abstract-Mixed convection in a porous medium from horizontal surfaces with variable wall temperature 
distribution is analyzed. The entire mixed convection regime is divided into two regions. The first region 
covers the forced convection dominated regime where the dimensionless parameter cr = Ra,,/Prf ’ is found 
to characterize the effect of buoyancy forces on the forced convection. The second region covers the free 
convection dominated regime where the dimensionless parameter (, = Pe,/Roi ’ is found to characterize 
the effect of the forced flow on the free convection. To obtain the solution that covers the entire mixed 
convection regime. the solution of the first region is carried OUI for tr = 0. the pure forced convection limit, 
to & = I and the solution of the second region is carried out for 5” = 0. the pure free convection limit. to 
5. = I. The two solutions meet and match at tr = <. = 1. Numerical results for different wall temperature 
variations are presented. In addition, correlation equations for the local and average Nusselt numbers are 

obtained. 

INTRODUCTION 

IN GENERAL the flow and thermal fieid in mixed con- 
vection from surfaces in a porous medium are non- 
similar, with the exception of certain cases with par- 
ticular boundary conditions and free stream velocity 
distribution [I, 21. For example, the case of variable 
wall temperature does not provide a similar solution 
and solutions must be sought by a nonsimilar method. 
For such a problem the approximation method of 
local similarity can be utilized. However, the local 
similarity solution suffers from inaccuracy with an 
error of l&15% [3, 41. To obtain more accurate 
results for nonsimilar boundary layer systems the 
local nonsimilarity solution method can be used [5]. 
This method has been applied recently [3, 61 for 
obtaining solutions for nonsimilar natural and mixed 
convection problems in porous media. Mixed con- 
vection from a horizontal plate with prescribed wall 
temperature in a porous medium is found to be 
characterized by the dimensionless parameter 
lr = Ra,/Pe.z/* [ 1,7]. This parameter covers the forced 
convection dominated regime; however, it is not poss- 
ible to cover the entire mixed convection regime 
because of the singularity it suffers at the limiting 
end of pure free convection. Nakayama and Pop [8] 
proposed a unified similarity transformation to the 

governing equations to overcome the problem of 
singularity at the other limiting end of the regime. 
Although the local nonsimilarity method can provide 
accurate results, it is an approximate method because 
some of the higher order terms in the governing equa- 
tions are neglected. A more exact solution for the 
nonsimilar boundary layer systems can be obtained 
by using a finite difference method [9, IO]. In this 
method one needs to carry out the solution from 
tr = 0 to the downstream location at a particular value 
of &. Thus, to cover an appreciable region of the 
forced convection dominated regime a large computer 
time is needed. To overcome such a problem in the 
present work, the entire mixed convection regime is 
divided into two regions as was done by Aldoss et 
al. [4]. The first region covers the forced convection 
dominated regime where tr = Ra,/Pe,~” is used to 
characterize the effect of the buoyancy force on the 
forced convection. The second region covers the free 
convection dominated regime with 5, = Pe,/Ra.z” as 
the dimensionless parameter that characterizes the 
effect of forced flow on the free convection. The first 
system is solved to cover the region between tr = 0 
and 1 and the second system is solved to cover the 
region between 5, = 0 and 1. The two solutions meet 
and match at tr = c, = 1 [4]. Each of these solutions 
provides a half of the total solution for the entire 
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NOMENCLATURE 

Cl., local friction factor Greek symbols 

./ dimensionless stream function a effective thermal diffusivity of saturated 
/I(S) local heat transfer coefficient porous medium 
/; average heat transfer coefficient, B volumetric coefficient of thermal 

(l/L) 1; h(x) ds expansion 
k thermal conductivity 6 boundary layer thickness 
K permeability coefficient of the porous pseudo-similarity variable 

medium z dimensionless temperature 
L length of the plate P dynamic viscosity 
NII, local Nusselt number, h/k kinematic viscosity 
Nu average Nusselt number, hL/k ir nonsimilarity parameter for the forced 
Pe, local Peclet number, u, s/a convection dominated regime 

(lw local surface heat flux r 
4" nonsimilarity parameter for the free 

Ra, local Rayleigh number, convection dominated regime 
g/l [T,(x) - T,.] KS/( NY) P fluid density 

Re Reynolds number, u, S/V * stream function. 
T temperature 
T, free stream temperature Subscripts 

T* wall temperature f  forced convection dominated condition 
11, 1’ velocity components in .Y- and !I-direction n free convection dominated condition 

u , free stream velocity .y, .I’> 5 r, 5” partial derivatives with respect 
s, )’ axial and normal coordinates. to x, I’, tr, and t,, respectively. 

mixed convection regime. Numerical results for 
different wall temperature distribution are presented. 

ANALYSIS 

Consider the mixed convection from an imper- 
meable horizontal plate at the bottom of a porous 
medium where the plate is heated and has variable 
wall temperature. The Darcy model is used, which is 
valid under the conditions of low velocities and small 
pores of porous matrix [ 1 I]. Also, the assumption of 
slip velocity at the wall is imposed, which has a smaller 
effect on the heat transfer results as the distance from 
the leading edge increases [ 121. The axial and normal 
coordinates are x and JJ. and the corresponding Dar- 
cian velocity components are ZI and u, respectively. 
The gravitational acceleration g is acting downward 
in the direction opposite to the y  coordinate. The 
properties of the fluid and the porous medium are 
assumed to be constant and isotropic. By invoking 
the Boussinesq and the boundary layer approxi- 
mations, the governing equations are given by [ 131 

u, + q = 0 (1) 

‘b.,, = - (fkgBli4 T, (2) 

T,,?. = WW,.T,-I(/.xT,.). (3) 

In the above equations, the stream function $ satisfies 
the continuity equation with u = J/, and u = --Ijl; T 
is the temperature; p, p, and p are the density, 
viscosity, and the thermal expansion coefficient of the 
convecting fluid, respectively ; K is the permeability of 

the porous medium; and tl is the equivalent thermal 
diffusivity of the porous medium. With power-law 
variation in the wall temperature. the boundary con- 
ditions can be written as 

y=O:T,-T, =ax”,v=O 

J#=w:T= T,,u=u, (4) 

where a and IZ are prescribed constants. Note that 
IZ = 0 correspond to the case of uniform wall tem- 
perature. 

A. Forced convection dominated regime 
In this regime the following dimensionless variables 

are introduced : 

‘I = (.d4Pe.!.‘2, tr = b-(4 (5) 

II/ = a Pd” f(L I?), 

@CL, 9) = (T- TJlP-w(x) - Tzl. (6) 

The governing equations and boundary conditions, 
equations (l)-(4), can then be transformed into 

f w  + 5r[nO - (V/2)0’] = - (n- l/2)5$,, (7) 

0”+(//2) fO’-rzf’tl = (n-1/2)~r(f’05,-@,fir) (8) 

f(5r,o)+2(n-1/2)5r.fE,(5r,o) = 0 or f(tr,o) = 0, 

@(LO) = 1, f’(<r, 00) = 1, O(C,, a) = 0 (9) 

where 

&(x) = Ra,JPe,z12 (10) 
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and the primes denote partial differentiations with 
respect to 1. 

In the above system ofequations, the dimensionless 
parameter & is a measure of the buoyancy effect on 
forced convection. The case of <r = 0 corresponds to 
pure forced convection and the limiting case of ?jr = co 
corresponds to pure free convection. The above sys- 
tem of equations (7)-(9) is solved for the region 
covered by tr = O-1 to provide the first half of the 
total solution of the mixed convection regime. 

Some of the physical quantities of interest include 
the velocity components u and u in the x and y  
directions, the local friction factor Cr.Y (defined as 
s,/(pu$)/2, where T, = p(u,.),.=& and the local Nus- 
selt number Nu, = hx/k, where h = q,/[T,(x) - TJ. 
They are given by 

Nu,~ Pe,; ‘,‘I = -O’(&, 0). (14) 

The average Nusselt number % can be evaluated by 
finding the average heat transfer coefficient /;from the 
local Nusselt number expression, equation (14). The 
end result is 

where Pe,. and <r, are Pe, and &evaluated at 5 = L. 

B. Free conoection dominated regime 
For buoyancy dominated regime the following 

dimensionless variables are introduced in the trans- 
formation 

(16) 

Substituting equations (16) and (17) into the govern- 
ing equations (l)-(4) leads to 

f”+nO+[(n-2)/3]1@‘= -[(l-2n)/3]<.05n (18) 

8”+[(n+ l)/3]fO’-nf’fI 

= [(I -2n)/31Mf"4n-~'fcn) (19) 

(n+ l)f(LO)+U -WL&.Gi,0) = 0 or.f(LO) = 0 

S(5”,0) = 1, f’(L ml = 5.3 Q5”, co) = 0 (20) 

where 

5, (x) = Pe,v/Ra.z’3 (21) 

and the primes in equations (l8)-(20) denote the par- 
tial differentiations with respect to q. 

Note that the 5, parameter here is a measure of the 
forced flow effect on free convection. The case of 
5, = 0 corresponds to pure free convection and the 
limiting case of 5. = co corresponds to pure forced 
convection. The above system of equations (I 8)-(20) 
is solved over the region covered by 5, = O-l to pro- 
vide the other half of the solution for the entire mixed 
convection regime. 

The velocity components u and II, the local friction 
factor, and the local Nusselt number have the ex- 
pressions 

u = (~r/x)Ru.;!~ f’(t,, 9) (22) 

u= -(~/x)R~:“{[(n+1)/3lf(5n.)1) 

+1(=2)/31tm~) + tu -w3khnj (23) 

C(PefPr-‘Ra.;’ = 2f”(l,,O) (24) 

and 

Nu, Ra, “3 = -e’(<,, 0). (25) 

The corresponding average Nusselt number Nu can 
be evaluated as in the previous case and has the 
expression 

Nu Ra; ‘I3 

where Ra, and t,, and Ra,v and 5, at x = L. 
The two systems of partial differential equations, 

equations (7)-(9) and (18)-(20), have the same gen- 
eral form. Thus, they can be solved using the same 
method. The finite-difference method of Keller as 
described by Cebeci and Bradshaw [9] is used and the 
details of such solution method are not presented here 
to conserve space. The complete solution for the entire 
mixed convection regime is constructed from the 
two separate solutions of the above two systems of 
equations. 

RESULTS AND DISCUSSION 

Results are presented for the values of the exponent 
0.5 < n < 2. These exponent values are found to pro- 
vide physically realistic problems for the case of vari- 
able wall temperature of the power-law form. The 
criteria in determining the range of n values are based 
on the requirements that the streamwise velocity and 
the boundary layer thickness must increase or remain 
constant with increasing distance from the leading 
edge as long as the wall temperature at x > 0 is higher 
than that of the surroundings [13]. From equation 
(16) the boundary layer thickness, which is of order 
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of y, varies like x-(“- 2)/3 and from equation (22) u 
varies like ,K”“+ ‘)j3. Thus, the condition on the 
exponent n is 0.5 B n 6 2.0. 

Results for t3(<,, rf) and .f’(<r, rf), the temperature 
and the velocity profiles, are presented in Figs. 1 and 
2 for different values of tr and n. Figure 1 shows that 
as n increases the thermal boundary layer thickness 
decreases and that for a particular value of rr the 
temperature gradient at the wall increases as n 
increases, resulting in a higher heat transfer rate at a 
higher value of n. Also, as the buoyancy parameter tr 
increases the temperature gradient at the wall 
increases. This means that higher heat transfer rate is 
expected at a higher value of cr. The effect of increas- 
ing n value on the velocity profiles is evident from 
Fig. 2, where it can be seen that as n increases the 
momentum boundary layer thickness decreases. In 
addition, as expected, an increase in cr increases the 
slip velocity at the wall. 

Values of -O’(tr, 0) from solutions of the forced 
convection dominated system and -O’(<,, 0), from 
solutions of the free convection dominated system at 
selected values of rr and c, are listed in Table 1 fot 
different values of n. The local Nusselt number dis- 
tribution for different values of n are shown in Fig. 3 
for the entire mixed convection regime in terms of 
Nu,~ Pe.; I”. It is clear from Fig. 3 that the two solu- 

tions from the forced convection end and from the 
free convection end meet and match nicely over the 
mixed convection regime. It is seen from Fig. 3 that 
higher Nusselt number occurs at higher values of n 
and tr, which means that increasing buoyancy force 
gives rise to an increase in the rate of heat transfer. The 
local Nusselt number expression from the free con- 
vection end, equation (25), can be written in the form 

where tr = th3’I or <, = <;2’3, The domain for pure 
forced convection, mixed convection, and pure free 
convection can be established from the present results 
based on a 5% departure in the local Nusselt number 
from pure forced convection limit or from pure free 
convection limit. These values are listed in Table 2. 

For practical purposes, correlation equations were 
developed for the local Nusselt numbers. By using the 
least square fitting technique the local Nusselt number 
for pure forced convection in the range of 0.5 $ n < 2 
can be correlated by 

where 

A$ = f,(n) Pe”’ .r cm 

f,(n) = 0.582+0.685n-0.167n2+0.0285n3. (29) 

For the case of pure free convection, the corres- 

1.0 

0.5 

1.0.0 

0.5 

0 

FIG. 1. Dimensionless temperature profiles at selected values of& and n. 
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FIG. 2. Velocity profiles at selected values of tr and II. 

Table 1. Values of -0’(<,. 0). -O’(&. 0) at selected values of g, and <. for different values of II 

0.0 0.886230E+OO O.l12826E+OI 0.1332998+01 O.l50458E+Ol 
0.1 0.913309E+OO 0.117368E+Ol 0.139162E+01 O.l58304E+Ol 
0.2 0.938787E+OO 0.121518E+01 0.144782EfOl O.l65322E+Ol 
0.3 0.962980E +00 O.l25395E+Ol 0.149987E+OI O.l71792E+OI 
0.4 0.985962E+OO O.l29016E+OI O.l54808E+Ol O.l77754E+Ol 
0.5 0.10078lE+Ol O.l324OOE+Ol O.l59273E+OI O.l83245E+Ol 
0.6 O.l02859E+OI O.l35566E+Ol 0.163412E+Ol O.l88306E+Ol 
0.7 0.104839E+Ol O.l38533E+Ol O.l67254E+OI O.l92975E+Ol 
0.8 O.l06727E+Ol 0.141317E+01 O.l70828E+OI O.l97293E+Ol 
0.9 0.108532E+Ol O.l43938E+Ol 0.174165E+Ol 0.201298E+O1 
I.0 O.Il0204E+0l O.l46264E+OI 0.177029E+01 0.204617E+Ol 

” = 0.5 n= I.0 

1.0 0.110203E+01 O.l46262E+Ol 
0.9 0.107088E+Ol O.l42489E+Ol 
0.8 0.104101E+01 O.l38820E+Ol 
0.7 0.101127E+01 O.l35143E+Ol 
0.6 0.98 I760E + 00 O.l31467E+OI 
0.5 0.952586E+OO O.l27799E+Ol 
0.4 0.923849E+OO O.l24146E+Ol 
0.3 0.895652E+OO 0.120517E+01 
0.2 0.868097E+OO 0.116919E+01 
0.1 0.841288E+OO 0.113359E+Ol 
0.0 0.816426E+OO 0.109947EfOl 

n = 1.5 

O.l77016E+01 
O.l72747E+OI 
O.l6854lE+Ol 
O.l64311E+Ol 
0.160065E+01 
O.l55806E+Ol 
O.l5l54lE+Ol 
O.l47275E+Ol 
0.143013E+01 
O.l38762E+Ol 
O.l34586E+Ol 

n=2 

0.20460 I E + 0 1 
0.200156E+O1 
O.l9548lE+Ol 
O.l90769E+Ol 
O.l86022E+Ol 
O.l81243E+Ol 
O.l76436E+Ol 
0.171603E+01 
O.l66746E+Ol 
0.161870E+01 
0.157116E+Ol 
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FIG. 3. Local Nusselt number variation for mixed convection with variable wall temperature (r, - T, = a.~“). 

ponding correlation equation for the local Nusselt 
number is given by 

Nu, =.f2(n) Ra!” (30) 

where 

f2(n) = 0.474+0.762~-0.168rr’+O.O319n’. (31) 

Equations (28) and (30) fit the computed results for 
pure forced convection and pure free convection 
within an error of less than 5%, respectively. 

Following Churchill 1141, the correlation equation 
for the local Nusselt number in mixed convection can 
be expressed as 

(Nu,/Nur)” = I +(Nu,/Nu,-)I”. (32) 

For the present problem the correlation equation for 
the local mixed convection Nusselt number can be 
presented by 

Nu, Pe; li2/f, (n) 

= [I + (fi(n)(Ra,/Pe,:‘2) ‘13/f,(n)}“t] ““‘. (33) 

The corresponding correlation equation for the aver- 
age mixed convection Nusselt number z = hL/k, 
where 4 is the average heat transfer coefficient over 
the plate length L, can be presented by 

Table 2. Domains of pure forced convection, mixed convec- 
tion, and pure free convection 

Range of tr = Ra,/Pe:’ values for: 
Exponent Forced Mixed Free 

” convection convection convection 

0.5 O-0.18 0.18-11 I I-ffi 
1.u (M.11 0.1 l-17 17-m 
I.5 Co.07 0.07-24 24-w 
2.0 O-0.06 0.06-27 27-m 

Nu Pe; “‘/2j‘, (n) 

= [I + {[3/(n+ l)].f~(n)(Ra,./Pe:“)““/2,/,(n))“’]””’ 
(34) 

where Pe,. and Ra, are Pe, and Ra, evaluated at 
.Y = L. Equation (34) is obtained from equation (33) 
by knowing the average Nusselt number expressions 
for pure forced convection Nu( and pure free con- 
vection Nu,. They are found as 

and 

Nu,- = 2J’, (n) Pel” (35) 

Nu, = [3/(n+ I)]./‘&) Ra:“. (36) 

An exponent value of m = 3 in equations (33) and 
(34) is found to correlate the predicted results very 
well. The maximum deviation between the correlated 
and the predicted mixed convection Nusselt numbers 
is found to be less than 5% for the range of 
0.5 ,< n < 2 over the entire regime of mixed con- 
vection. 

CONCLUDING REMARKS 

In studying mixed convection from a horizontal 
plate in a saturated porous medium with variable wall 
temperature, the analysis is carried out by dividing 
the entire regime into two regions. The first is forced 
convection dominated region where the dimensionless 
parameter tr = Ru,/Pe,z” characterizes the effect of 
the buoyancy force on the forced convection and the 
second is the free convection dominated region where 
the dimensionless parameter 5. = Pe,y/Ru.z” char- 
acterizes the effect of the forced flow on the free con- 
vection. Numerical solutions using a finite difference 
scheme are obtained for the two regions for the range 
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of ir and <,, from 0 to I. The two solutions meet 
and match at <r = <,, = I. By this approach the entire 

mixed convection regime is covered completely by the 

two solutions. Numerical results from both regions of 
solutions are presented for different values of the wall 

temperature variation. Correlation equations for the 

local and the average Nusselt numbers are also given. 
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